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Abstract

The objective of this study is to develop intelligent control schemes for the transverse vibration reduction
of an axially moving string. The proposed approaches are backboned by the methods of fuzzy sliding-mode
control (FSMC) and fuzzy neural network control (FNNC). In practice, the control effort for the system is
realized through a typical mass–damper–spring (MDS) system attached at the right-hand side boundary of
the moving string. The dynamic coupling between the string and the MDS system provides an actuation
force to suppress transverse vibration. In the first phase of this study, the framework of FSMC is designed,
in which the techniques of region-wise linear fuzzy logic control design and generic algorithm technique are
employed to facilitate FSMC to reduce a large number of fuzzy rule bases and to select optimal control
gains, respectively. In the second phase, the FNNC is developed, which is, compared to the FSMC, easier to
design the control rule, more robust against environment and capable of on-line learning. Numerical
simulations are conducted and the comparison between various controllers is made based on simulations.
The simulated results show that the transverse vibration can be well suppressed by both approaches. FSMC
offers the capability to regulate the transient response, while FNNC holds advantage of on-line learning
capability.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The axially moving string system can be applied to many mechanical systems such as cable
tramways, band saws, fiber winders, fluid pipes, magnetic tapes, traveling strings and power
transmission chains/belts. Carrier [1] proposed an approximate non-linear theory to describe the
vibration of a string. Mote [2], Wickert and Mote [3,4], and Lee and Mote [5] analyzed stability,
vibration and energetics of the axially moving system. Chen [6] studied the natural frequencies
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and stability of the axially moving string in contact with a stationary load system. In this study,
the effects of system parameters such as dry friction, inertia, damping and stiffness were also
investigated on the stability and nature frequency of the system.
Boundary control is an economic approach to control distributed parameter systems (DPS) due

to the reason that it does not need sensors or actuators attached to the main body of controlled
continuous system. Furthermore, active and passive controls can be easily implemented at
boundaries. As results, this ‘‘boundary control’’ becomes a popular research topic recently. Chen
[7] estimated the energy decay of a wave equation in a bounded domain. Jai and Pritchard [8]
found that if sensors or actuators located at nodal points, the DPS is uncontrollable and
unobservable. Yang and Mote [9], Chung and Tan [10], and Yang and Mote [9] performed s-
domain analysis. Chung and Tan [10] proposed active vibration control implemented by wave
cancellation. Lee and Mote [11] used the boundary controller to suppress vibration of an axially
moving string. Fung and Tseng [12] designed a new boundary controller by the method of sliding-
mode control via Lyapunov function formulation. The asymptotic stability of this controlled
system is proved by semi-group theory. However, the control effort generated becomes
unbounded as the trajectory approaches origin.
A number of researchers investigated the relationship between sliding-mode and fuzzy control.

Palm [13] proposed a specific class of fuzzy controllers derived from the phase plane, which is
similar to the sliding-mode control with a boundary layer. Yager and Filev [14] determined the
fuzzy rules according to the sliding-mode condition. Lu and Chen [15] combined the best features
of self-organizing fuzzy control and sliding-mode control to achieve rapid and accurate tracking
control of a class of non-linear systems. The fuzzy rule base is used to approximate the equivalent
control through self-organizing, and the variable structure control effort is used to compensate for
the approximation error and to provide exponential convergence of the sliding variable. Wu and
Liu [16] used the sliding modes to determine the best values for the parameters in the fuzzy control
rules to improve robustness of fuzzy control. The Lyapunov function and the boundary layer have
been employed in this study to satisfy the reaching condition and to avoid chattering, respectively.
Fung et al. [17] designed a region-wise linear fuzzy sliding-mode controller to regulate toggle and
quick-return mechanism.
There have been considerable interests in the past few years for exploring the applications of

fuzzy neural network (FNN) systems, which combine the capability of fuzzy reasoning to handle
uncertain information [14,18–20] and that of artificial neural networks to learn from processes
[21–24]. This approach would be able to deal with non-linearities and uncertainties of control
systems [20,25–30]. For instance, the adaptive fuzzy systems or FNNs are introduced as identifiers
for non-linear dynamic systems based on the back-propagation algorithm [19]. Chen and Teng
[28] proposed a model reference control structure using an FNN controller, which is trained on-
line through an FNN identifier with adaptive learning rates. Zhang and Morris [29] provided a
technique for modelling of non-linear systems using an FNN topology. Jang and Sun [30]
reviewed the advances in neuro-fuzzy synergisms for modelling and control based on the
framework of adaptive network.
This study is aimed to suppress transverse vibration of an axially moving string by application

of a mass–damper–spring system (MDS) at the RHS of the axially moving string system. Two
general types of fuzzy control schemes are employed to seek out the successes of intelligent control
schemes. The first type utilizes pre-defined sliding function and its derivatives as the input
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variables for the fuzzy system to determine the ensuing fuzzy logics—mimicking the approach in
the conventional sliding-mode control. Therefore, this control scheme is named as ‘‘fuzzy sliding-
mode control’’ (FSMC) as in Refs. [16,17]. This control design resolves two common difficulties of
initializing a fuzzy control design: (1) The synthesis process of fuzzy control logics is often
experience oriented such that a great difficulty exists for designers to establish fuzzy rule bases,
and (2) For most cases, little knowledge is available for the system characteristics. In addition to
the above two advantages for design, the FSMC forces the system dynamics first converge to the
sliding surface before reaching the origin, providing the means to regulate the transient response.
To reduce the number of fuzzy rule bases and to select the optimal control gains, respectively, the
techniques of region-wise linear fuzzy logic control (RLFLC) and generic algorithm (GA) can be
employed to assist the FSMC. The second type of approaches is the fuzzy neural network control
(FNNC), which utilizes neural networks to perform an on-line learning of the system dynamics
and to synthesize fuzzy reasonings to handle system uncertainty [14,18–20]. It would be found
based on the design process and simulation of the controlled systems that FSMC has ability to
regulate the system transient response through the sliding function formulation and easy to build,
while FNNC holds the capability of robust and on-line learning. Compared to the boundary
control for the axially moving string system via sliding-mode control adopted by Fung and Tseng
[12], FSMC and FNNC proposed herein both hold capability of tackling parametric uncertainty
and generating bounded control efforts, which renders application realizable.

2. Equations of motion

The physical model of an axially moving string system is depicted in Fig. 1. A moving string
passes through one fixed end and a mass–damper–spring (MDS) system acts at the other end. The
MDS includes a lump mass m; a viscous damper with constant coefficient dm and a spring with
constant stiffness km: The string spans in total length of l; the mass per unit length of which is r;
the material damping is denoted by cv; and the axially rigidity of the string EA: The string is
assumed subjected to an initial tension force T0 and move axially in a constant translating speed c:
The string exhibits the transverse displacement v at axial co-ordinate x. The control actuation
input fc is applied at the mass of a mass–damper system attached at the RHS of the string for the
purpose of suppressing the transverse oscillations. The dimensionless governing equation and
boundary conditions of the axially moving string system [12] are

Vtt þ ZvðVt þ bVxÞ þ 2bVxt þ ðb2 � 1ÞVxx � 3
2
b21V

2
xVxx ¼ 0; ð1aÞ

c

y

x = 0
o ( )txv ,

mdmk
m cf

x
x = l

Fig. 1. An axially moving string system with MDS controller.
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V ð0; tÞ ¼ 0; ð1bÞ

Fc ¼ qtt þ ðZm � mrbÞqt þ Smq � mrðb
2 � Ts1Þq1; ð1cÞ

where

V ¼
v

l
; x ¼

x

l
; t ¼

C2t

l
;

qðtÞ ¼ Vðl; tÞ; qtðtÞ ¼ Vtðl; tÞ; qttðtÞ ¼ Vttðl; tÞ;

q1ðtÞ ¼ Vxðl; tÞ; Ts1 ¼ 1þ 1
2
b21q

2
1;

C1 ¼

ffiffiffiffiffiffiffiffi
EA

r
;

s
C2 ¼

ffiffiffiffiffiffi
T0

r

s
; b ¼

c

C2
; b1 ¼

C1

C2
;

Zv ¼
cvl

rC2
; Zm ¼

dml

mC2
; Fc ¼

fcl

mC2
; Sm ¼

kml2

mC2
2

; mr ¼
rl

m
:

Note in Eq. (1) that the subscripts with respect to V and q are temporal differentiations except for
the notation q1; t is the non-dimensionalized quantity of time t. The last term in Eq. (1a)
characterizes the geometric non-linearity. fc is the actuation force exerted by the MDS and Fc is
the associated non-dimensionalized counterpart. With the governing equations in hand, the
dimensionless form of the total mechanical energy is then

*EðtÞ ¼
1

2

Z l

0

ðVt þ bVxÞ
2 dxþ

1

2

Z l

0

V2
x dxþ

1

8
b21

Z l

0

V4
x dxþ

1

2
%mrðq2t þ Smq2Þ; ð2Þ

where %mr ¼ 1=mr: Note from Eqs. (1) and (2) that the condition b1 ¼ 0 reduces Eqs. (1) and (2) to
linear equations.

3. Fuzzy sliding-mode control

In recent years, there have been many successful applications using fuzzy control and sliding-
mode control, but there still exist several difficulties. First, the establishment of fuzzy control rules
is model dependent and experience oriented. Second, to render smooth control response, the
number of rule bases rises exponentially, which increase level of design difficulty. Third, it needs
effort to find suitable shapes for membership functions. To remedy the aforementioned problems,
some techniques are applied. The first one is the fuzzy logic control plus sliding-mode
formulation, which reduce the size of the computations consumed by fuzzy reasoning. The second
one is the technique of RLFLC scheme applied to fuzzy logics, which reduces the number of fuzzy
rules. The third one is the GA, which could help find optimal membership functions that generate
a control within prescribed saturation bounds for fast responses.
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3.1. Design of the fuzzy sliding-mode control

To initialize FSMC design, the sliding-mode formulation is adopted to establish the fuzzy logic
rules. First, the sliding function, denoted by s; captures the sum of displacement and velocity of
the oscillating string at RHS boundary; i.e., s � e þ ’e where e ¼ V l; tð Þ plays the role of the
conventional error function for fuzzy control design, which is desired to be suppressed. In this
way, the FSMC designed is capable of first converging the system dynamics to the neighborhood
of the sliding surface before reaching the origin; in other words, providing the means to regulate
the transient response. In practice and ensuing simulation, ’e and ’s are considered available by the
discrete approximation of

’eðKTÞ ¼
1

T
½eðKTÞ � eðK � 1ÞT �;

’sðKTÞ ¼
1

T
½sðKTÞ � sðK � 1ÞT �; ð3Þ

where K is the number of iteration and T is the sampling period. The output of the FSMC is Fc;
the actuation force on the MDS. In order to accommodate various system characteristics for a
better control, the sliding functions s and ’s are multiplied by scaling factors GS and GCS;
respectively. These factors are mainly used to equip designers with the capability of adjusting
control gains before s and ’s taken as inputs for membership functions. The scalings give

S ¼ sGS; ’S ¼ ’sGCS: ð4Þ

The associated fuzzy sets are determined as follows:

The membership functions for the fuzzy sets of S, ’S and Fc are defined and illustrated in Fig. 2. It
is seen from this figure that only five fuzzy subsets, NB, NM, Z, PM, PB, are defined for S and ’S;
which require subsequently 25 fuzzy rules to accomplish the fuzzy control design. The resulting
fuzzy sliding-mode inference rules are shown in Table 1, where Fc is the fuzzy mapped function of
S and ’S: Note that the essence of rules in Table 1 originates from the concept of the conventional
feedback control in which Fc plays the role of negative feedback. Note also that by imposing the
upper/lower bounds on the membership function of Fc; one is able to realize the actual saturation
of the control effort, which is often difficult for most conventional control design approach.

3.2. Design of region-wise linear fuzzy logic control

As the number of input variables for fuzzy controller increases, the number of fuzzy if–then
rules increases exponentially; consequently, this increases a great deal of computation burden to
synthesize fuzzy control output. In order to minimize the effort of control synthesis, the technique
region-wise linear fuzzy control is applied herein to FSMC. The controller equipped with this
technique is named RLFLC.

N: Negative, Z: Zero, P: Positive,
NH: Negative huge, NB: Negative big, NM: Negative medium,
NS: Negative small, ZE: Zero, PS: Positive small,
PM: Positive medium, PB: Positive big, PH: Positive huge.
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For implementing the region-wise technique, a region-wise functions S	 is first defined as

S	 ¼ S þ ’S: ð5Þ

Table 2 lists the fuzzy relationship among S	; S and ’S; where the fuzzy variable S	 characterizes
the sum effect of S and ’S: The information revealed in both Tables 1 and 2 makes possible the
derivation of the fuzzy relationship between Fc and S	 which is listed in Table 3. The variable S	 is
now considered the new sole fuzzy variable to synthesize fuzzy controller. The corresponding
memberships designed for S* and Fc are given in Fig. 3. Compared to the original scheme of

-0.04 -0.02 0.02 0.040

-0.04 -0.02 0.02 0.040

NB NM Z PM PB

S

NB NM Z PM PB

S

NH NB NM NS ZE PS PM PB PH

-1 -0.5 0.25-0.75 0.50.0

cF

0.25 0.75 1

Fig. 2. Membership functions for the fuzzy sets corresponding to S; ’S and Fc:

Table 1

Linguistic rules based on FLC for the axially moving string system

Fc
’S

NB NM Z PM PB

S NB PH PB PM PS ZE

NM PB PM PS ZE NS

Z PM PS ZE NS NM

PM PS ZE NS NM NB

PB ZE NS NM NB NH
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FSMC, this method of RLFLC reduces the number of fuzzy variable from two (S and ’S) to one
(S	); as result, decreasing greatly the number of fuzzy linguistic rules. Note, however, that the
dynamic characteristics of the RLFLC are not different from FSMC in nature.

3.3. Genetic algorithm (GA) for scaling factor design

The scaling factors GS and GCS in Eq. (4) allow designers to perform control tunings through
re-shaping of membership functions. It is expected to result in a better performance in terms of
overshoot, response time, etc. Large values of GS and GCS generally render an effect of large
control gains, which may causes small rise time and chattering, while small GS and GCS may lead
to long settling time or even destabilizing system. The Genetic Algorithm is a numerical algorithm
used to find optimal shapes of membership functions via minimizing a prescribed cost function

Table 2

Relationships between S	; S and ’S for the axially moving string system

S	 ’S

NB NM Z PM PB

S NB NH NB NM NS ZE

NM NB NM NS ZE NS

Z NM NS ZE PS PM

PM NS ZE PS PM PB

PB ZE PS PM PB PH

Table 3

Rule base for RLFLC

S	 PH PB PM PS ZE NS NM NB NH

Fc NH NB NM NS ZE PS PM PB PH

0.02 0.040

Z PS PM PB PHNH NB NM NS

-0.04 -0.02 0.06 0.08-0.06-0.08

*S

-1 -0.5 -0.25-0.75 0.25 0.5 0.75 10

cF

NSNMNBNH PS PM PB PHZE

Fig. 3. Membership functions of S	 and Fc for RLFLC.
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that makes design objective probable. This cost function is the so-called fitness function F ; defined
by

F ¼
1

J þ 1
; ð6aÞ

where the objective function J is the discrete sum of displacement at the middle point of the string
times the sampling time; i.e.,

J ¼
X

jV ðl=2; tÞDtj; ð6bÞ

where Dt is the sampling time. With the fitness function defined, one is able to find optimal values
of GS and GCS numerically [31]. Note that since the mid-point vibration level, V ðl=2; tÞ in J given
in Eq. (6b), are not often measurable, the optimal values of GS and GCS would be obtained off-
line through an optimization process based on a fitness function Eq. (6a). This process demands a
high accuracy of mathematical model to ensure the effectiveness of FSMC controller. To avoid
this drawback of GA, the method of neural network will be employed to realize on-line learning of
model in the ensuing study.

4. Design of the FNNC

4.1. Fuzzy neural network

A general four-layer FNN structure shown in Fig. 4 is adopted to implement the proposed
FNN controller, which consists of the input (i layer), membership (j layer), rule (k layer), and
output (o layer) layers. The signals e and ’e in Fig. 4 are error input for the FNN mechanism and
its time derivative, respectively. e is defined by e ¼ qðtÞ � qd ; where qðtÞ; as given previously in
Eq. (1), is the displacement at RHS of the oscillating string and qd is the desired value of qðtÞ at

i

j

k

o
Output Layer

Σ

ΠΠΠΠΠΠΠΠ Π

4
oy

3
ky

3
jx

2
jy

2
ix

1
iy
1
ix

co Fy =4

e e

Rule Layer

Membership Layer

Input Layer

(O=1)

(k=1~9)

(j=1~6)

(i=1~2)

4
kx4

kow

Layer 4

Layer 3

Layer 2

Layer 1

Fig. 4. Structure of the four-layer FNN.
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steady state, which is set to be zero for satisfactory vibration suppression. The output of the FNN
would be used for realizing the actuation of the MDS; i.e., Fc: The nodes in the input layer
represent the input linguistic variables. Those in the membership layer act as the membership
functions. Moreover, all the nodes in the rule layer represent a fuzzy rule base. The signal
propagation and the basic function of each layer are elaborated in the following:

4.1.1. Layer 1: (input layer)
For every node i in this layer, the net input and the net output are related by

net1i ¼ x1
i ; y1i ¼ f 1

i ðnet1i Þ ¼ net1i ; i ¼ 1; 2; ð7Þ

where x1
i represents the ith input to the node of layer 1.

4.1.2. Layer 2: (membership layer)
In this layer, each node plays a role of a membership function. The Gaussian function is

adopted as the membership function. For the jth node

net2j ¼ �
ðx2

i � mijÞ
2

ðsijÞ
2

;

y2j ¼ f 2
j ðnet2j Þ ¼ expðnet2j Þ; i ¼ 1; 2; j ¼ 1B6; ð8Þ

where mij and sij are, respectively, the mean and the standard deviation of the Gaussian function
for the jth node, which takes the ith linguistic variable x2

i as the input. Note that the main
objective of the layer 2 is to form the membership functions for incorporating the fuzzy logics in
the structure of neural network; therefore, the weights between layers 1 and 2 are set as unities,
bearing no responsibility of updating. As result, in Fig. 4, the weights between layers 1 and 2 are
not denoted.

4.1.3. Layer 3: (rule layer)
Each node k in this layer is denoted by P; which multiplies the incoming signal with weightings

and outputs the resulted product. For the kth rule node,

net3k ¼
Y

j

w3
jkx3

j ; y3k ¼ f 3
k ðnet3kÞ ¼ net3k; j ¼ 1B6; k ¼ 1B9; ð9Þ

where x3
j represents the jth input to the node of layer 3. The weights between layers 2 and 3 are

also set to be unities herein, leaving the adaptation capability of this FNN scheme, shaping on
membership functions and adjusting weightings, to be performed in layer four.

4.1.4. Layer 4: (output layer)
The single node o in this layer is a labelled by S; which computes the overall output by summing

all incoming signals as

net4o ¼
X

k

w4
kox4

k; y4o ¼ f 4
o ðnet4oÞ ¼ net4o; o ¼ 1; ð10Þ
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where the link weights w4
ko’s are the output action strength of the oth output associated with the

kth rule; x4
k represents the kth input to the node of layer 4, y4o is the output of the neural network.

In practice, y4
o is realized by the actuation of the MDS; i.e., y4

o ¼ Fc:

4.2. On-line learning algorithm using delta adaptation law

The key part of the learning algorithm for the FNN is how to recursively obtain a gradient
vector in which each element in the learning algorithm is defined as the derivative of a
performance function with respect to a design parameter of the network. This is done by means of
the chain rule, and the method is generally referred to as the back-propagation learning rule
because the gradient vector is calculated in the direction opposite to the flow of the output of each
node [26]. To describe the on-line learning algorithm of the FNN, the performance function PðtÞ
for the system of axially moving string is first defined as

PðtÞ ¼ 1
2
ðqðtÞ � qdÞ

2 ¼ 1
2
e2; ð11Þ

where e; based on the definitions of qðtÞ given previously in Eq. (1), represents the difference
between the displacement at RHS of the oscillating string and the desired one qd : Note that qðtÞ is
the feedback signal and qd is set to be zero for maximum vibration suppression of the string. With
the performance function (11) defined, the learning algorithm based on the back-propagation is
next formulated by the update laws for each layer, which are stated as follows in a backward
fashion.

4.2.1. Layer 4

The error term to be propagated is given by

d4o ¼ �
@P

@y4o
¼ �

@P

@e

@e

@y4
o

� �
¼ �

@P

@e

@e

@q

@q

@y4o

� �
ð12Þ

and the weights are updated by

Dw4
ko ¼ �Zw

@P

@w4
ko

¼ �Zw

@P

@y4
o

� �
@y4

o

@net4o

@net4o
@w4

ko

� 	
¼ Zwd

4
ox4

k; ð13Þ

where the factor Zw is the learning-rate parameter of the weight. The weights of the output layer
are updated according to the following equation:

w4
koðN þ 1Þ ¼ w4

koðNÞ þ Dw4
ko; ð14Þ

where N denotes the iteration number, while the initial values of weights are set to be uniform
over the output space of layer 3 for simplicity.

4.2.2. Layer 3
In this layer since the weights were set to be unities, only the error terms need to be calculated

and propagated, yielding

d3k ¼ �
@P

@net3k
¼ �

@P

@y4
o

� �
@y4

o

@net4o

@net4o
@y3k

@y3
k

@net3k

� 	
¼ d4ow4

ko: ð15Þ
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4.2.3. Layer 2

The multiplication operation is performed in this layer

d2j ¼ �
@P

@net2j
¼ �

@P

@y4
o

@y4o
@net4o

@net4o
@y3k

@y3
k

@net3k

� �
@net3k
@y2

j

@y2j

@net2j

" #
¼

X
k

d3ky3
k: ð16Þ

The update law of mij is

Dmij ¼ �Zm

@P

@mij

¼ �Zm

@P

@y2
j

@y2j

@net2j

@net2j

@mij

" #
¼ Zmd

2
j

2ðx2
i � mijÞ

ðsijÞ
2

ð17Þ

and the update law of sij is

Dsij ¼ �Zs
@P

@sij

¼ �Zs
@P

@y2
j

@y2
j

@net2j

@net2j

@sij

" #
¼ Zsd

2
j

2ðx2
i � mijÞ

2

ðsijÞ
3

: ð18Þ

The mean and standard deviation of the membership function layer are updated as follows:

mijðN þ 1Þ ¼ mijðNÞ þ Dmij ; ð19Þ

sijðN þ 1Þ ¼ sijðNÞ þ Dsij : ð20Þ

Recall that mij’s and sij’s are, respectively, the mean and the standard deviation of the Gaussian
membership functions employed. The factor Zm’s and Zs’s are the learning-rate parameters of the
mean and the standard deviation of the Gaussian function, respectively.
Note that while computing Eq. (12), the update law in the layer 4, the Jacobian of the system at

RHS of Eq. (12); i.e., @q=@y4o; cannot be determined directly due to the unknown dynamics of the
control system. Although an additional FNN identifier can be utilized to solve the problem,
ensuing heavy computation efforts are required to complete the calculation involved in layers 1
and 2. In order to ease computation and to increase the on-line learning rate of the weights, a
delta adaptation law for simplifying Eq. (12) is proposed as follows [32]:

d4oDCFNNe þ ’e; ð21Þ

where CFNN is a positive constant coefficient used to tune the degree of the relative emphases on e

and ’e: Note that with pre-determined CFNN Eq. (21) allows us to skip the complicated
computation of Eq. (12). Based on common practice, larger gains of CFNN cause a faster
convergence, but may destabilize the controlled system.

5. Numerical results

The finite difference approach is used herein to discretize the governing PDE (1) and
numerically simulate the response of the system. To conduct finite difference analysis, the total
length of the string is first discretized into N sections in equal section lengths Dx’s, and the
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temporal axis is also discretized by Dt: The explicit central difference algorithm is adopted with
the choice of spatial discretization parameter N ¼ 20: The stability for the convergence of the
finite difference criterion is [33]

Dtp
Dx2

2
: ð22Þ

With N ¼ 20 and l ¼ 1 (since l is already normalized) Dx is equal to Dx ¼ l=N ¼ 0:05: Also, the
temporal axis is discretized by Dt ¼ 0:00125: The determined Dx and Dt lead to Dt=Dx2 ¼ 0:5;
which satisfies the convergence criterion (22).
The dimensionless parameters for the string and the MDS are considered as l0 ¼ 1 m;

T0 ¼ 40N, Zv ¼ 0; C1 ¼ 63:25; C2 ¼ 6:33; b ¼ 0:02; b1 ¼ 10; mr ¼ 2; Sm ¼ 1 and Zm ¼ 0:32: The
initial shape of the transverse displacement of the string is given by V ðx; 0Þ ¼ 0:05x: The ranges of
GS and GCS are set to be 0oGSp3:1 and 0oGCSp3:1 for optimization.
In practice, the tension T0 and total length l of the axially moving string varied slightly while

the string is in vibration. The associated variations on T0 and l are considered as parametric
variations and external load disturbance, respectively, by

Parameter variation:

lðtÞ ¼ l þ 0:06* jqðtÞj; ð23Þ

TðtÞ ¼ To þ 40* jqðtÞj: ð24Þ

External disturbance:

qdis ¼ 6� 10�4 occur only at t ¼ 5: ð25Þ

Note that the disturbance for T0 and l in Eqs. (23) and (24) are set to be proportional to
oscillating displacement at RHS of the string, which reflects the geometric and physical reality.
The disturbance in Eq. (25) is set to be in a form of displacement disturbance with a small value of
qdis ¼ 6� 10�4 occurring at t ¼ 5:
Fig. 5 shows the simulation results for the case in which the FSMC is applied without the

assistance from the GA technique. Note that herein due to prior non-dimensionalizations
performed on the governing Eqs. (1) for all system variables, in this figure where simulation results
are shown, as well as Figs. 6–8 presented later, all physical quantities corresponding to x- and y-
axis are dimensionless (including time). In Fig. 5, four different cases are conducted and presented:
an uncontrolled system (dotted curves), the uncontrolled system with parameter variations
prescribed by Eqs. (23) and (24) (dot–dashed curves), a controlled system (dashed curves) and the
controlled system subjected to external disturbance prescribed by Eq. (25) (solid curves). Figs. 5(a)
and (b) show the displacements at middle point ðl ¼ 1

2
Þ and the RHS boundary (l ¼ 1) of the

axially moving string, respectively. Fig. 5(c) shows the time history of total mechanical energy
defined by Eq. (2). Note that herein the spatial integration for computing Eq. (2) is approximated
by the trapezoidal integration method. Fig. 5(d) shows the phase-plane of the RHS boundary
oscillation, where it is seen that the state trajectory approach the s ¼ 0 subspace as the FSMC is
employed. Fig. 5(e) shows the corresponding control effort. Note that the external disturbance
prescribed by Eq. (25) is applied to the RHS of the string system at t ¼ 5 for testing the capability
of disturbance rejection by the controllers. It is seen from Figs. 5(a)–(d) that the transverse
vibration of the controlled systems is well suppressed by the FSMC as compared to those
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uncontrolled; moreover, a good rejection of disturbance is achieved by the FSMC even though
finite spikes are present around t ¼ 5; as shown by the case denoted by solid curves.
In order to obtain a better vibration suppression at midpoint, the optimal scaling factors GS

and GCS in Eq. (4) are searched via the GA technique to assist the FSMC controller. The related

Fig. 5. Boundary control of the axially moving string system via FSMC method: (a) the transverse vibrating amplitudes

at the midpoint of the system, (b) the transverse amplitudes at the RHS boundary of the system, (c) the total energy of

the control system, (d) the phase plane, (e) the control effort. ‘‘y’’, Uncontrolled system; ‘‘– � ’’, uncontrolled system

with parameter variations; ‘‘– –’’, controlled system and ‘‘–’’, the controlled system subjected to external disturbance

prescribed.
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procedure of computation was stated in Section 3.3. Figs. 6(a)–(d) shows the simulation results
where the dotted curves represent the uncontrolled case, the solid curves represent the controlled
case with optimized ðGS;GCSÞ ¼ ð0:1; 0:5Þ by GA technique, and the dot–dashed and dashed

Fig. 6. Boundary control of the axially moving string system via FSMC assisted by GA method: (a) the transverse

amplitudes at the midpoint of the system, (b) the transverse amplitudes at the RHS boundary of the system, (c) the total

energy of the control system, (d) the objective function, (e) the control effort. ‘‘y’’, Uncontrolled system; ‘‘– � ’’,
controlled system with ðGS ;GCSÞ ¼ ð1:9; 0:9Þ; ‘‘– –’’, ðGS ;GCSÞ ¼ ð0:1; 1:8Þ and ‘‘–’’, the controlled system with optimal

gain ðGS ;GCSÞ ¼ ð0:1; 0:5Þ:
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curves correspond to those with ðGS;GCSÞ ¼ ð1:9; 0:9Þ and ðGS;GCSÞ ¼ ð0:1; 1:8Þ; respectively.
Note that the total mechanical energy shown in Fig. 6(c) and the objective function given by
Eq. (6) in Fig. 6(d), enable the performance evaluation on the controllers. Fig. 6(e) shows the

Fig. 7. Boundary control of the axially moving string system via RLFLC assisted by GA: (a) the transverse amplitudes

at the midpoint of the system, (b) the transverse amplitudes at the RHS boundary of the system, (c) the total energy of

the control system, (d) the objective function, (e) the control effort. ‘‘y’’, Uncontrolled system; ‘‘– � ’’, controlled system

with ðGS ;GCSÞ ¼ ð1:9; 0:9Þ; ‘‘– –’’, ðGS ;GCSÞ ¼ ð0:1; 1:8Þ and ‘‘–’’, the controlled system with optimal gain ðGS ;GCSÞ ¼
ð0:3; 0:5Þ:
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control effort. It is seen from these figures that the optimized ðGS;GCSÞ obtained by the GA
technique renders faster vibration suppression and smoother system response of string.
Fig. 7 shows the simulated results using the design schemes of RLFLC equipped with the

technique of GA where the dotted curves represent the uncontrolled case. Solid curves represent
the results with the optimized ðGS;GCSÞ ¼ ð0:3; 0:5Þ applied, while dashed and dot–dashed curves
represent the cases with ðGS;GCSÞ ¼ ð0:1; 1:8Þ and ðGS;GCSÞ ¼ ð1:9; 0:9Þ; respectively. It is seen
from these figures that as compared to the simulated results of FSMC with GA shown in Figs. 6, a
reduction of rule bases by RLFLC renders a similar general characteristic of controller
performance. This is due to the fact that RLFLC only provides a simplified computation
technique of the fuzzy logics rather than change dynamic nature of the controllers.
Fig. 8 shows the simulated results using the FNN control scheme. Dotted curves represent

the uncontrolled case while dashed and solid curves show the controlled results with CFNN ¼ 0:2
and 0.5, respectively. It is seen from the figures that the larger gains are used, the faster decay
of string transverse vibration is obtained either at RHS boundary or midpoint of the
moving string.

Fig. 8. Boundary control of the axially moving string system via FNNC: (a) the transverse amplitudes at the midpoint

of the system, (b) the transverse amplitudes at the RHS boundary of the system, (c) the total energy of the control

system, (d) the control effort. ‘‘y’’, Uncontrolled system; ‘‘– –’’, controlled system with small gain CFNN ¼ 0:2 and ‘‘–’’,

the controlled system with large gain CFNN ¼ 0:5:
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6. Discussions

Some conclusive remarks about various control designs based on controller development,
analysis and simulations are pertinent at this point.

* The merit of sliding function formulations for the fuzzy logics control as used for FSMC is
clearly demonstrated in Fig. 5(d), where it can be seen that the state trajectory approaches the
sliding surface initially and then follow it to the origin. This provides the designer a tool to
regulate the transient response and simultaneously guarantee the ultimate convergent tendency
to the origin; i.e., in physical sense, reduce the transverse vibration substantially.

* A general comparison in terms of transient and steady state responses between Figs. 5(a), (b),
6(a) and (b) shows that the FSMC with off-line optimized GA technique renders much better
transverse vibration reductions than the sole FSMC either at midpoint or RHS boundary of the
moving string. This result strongly recommends the usage of the GA technique to tune the
FSMC. However, the demonstrated controller performance by the FSMC with optimized GA
gains would be only possibly achieved by the off-line simulations/computations based on an
accurate established mathematical model.

* In order to overcome the disadvantage of the off-line tuning by the FSMC with optimized GA
gains, the FNNC is recommended consequently in this study. The neural network adopted in
the framework of FNNC is able to search for better membership functions of the fuzzy logic
rules for the purpose of tuning the controller in an on-line fashion.

* Both control designs of FSMC/RLFLC and FNNC possess the merit of robustness due to the
fact that the information of mathematical model is not required for controller synthesis and
activation.

* All control designs proposed, FSMC/RLFLC, FSMC with GA and FNNC, provide the option
to impose a limitation on the control effort through the fuzzy output formulation, which
complies with most actuators’ realistic specification. This holds the advantage over the
approach recommended by Fung and Tseng [12], where the large control efforts were
generated.

* Conclusively speaking, the proposed control design schemes suit for different goals and
scenarios. The FSMC/RLFLC provides the access to manage the transient response based on
the fuzzy inputs derived from the formulations of sliding functions. The FSMC with GA
provides the tool of tuning the FSMC based on the mathematical model to find optimum
scalings; however, any inaccuracy in the mathematical model would deteriorate the control
design; i.e., no robustness is guaranteed. The FNNC offers an automatic on-line tuning control
scheme only based on the input–output characteristics; however, the updating process of the
neural network adopted may result in a longer time for the system to converge.

7. Conclusions

This study successfully proposed various intelligent fuzzy control schemes to perform boundary
control of the axially moving string system for the purpose of transverse vibration reduction. The
control schemes are mainly FSMC/RLFLC, FSMC with GA and FNNC. In the framework of
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FSMC/RLFLC, the sliding function is employed as fuzzy inputs to provide the capability for the
designer to regulate the transient response of the system. The scheme of FSMC with GA offers a
off-line computation procedure to optimize the scalings on the fuzzy inputs of the sliding
functions in order to search the faster/smoother vibration reduction. Due to possible inaccuracy
resided in the mathematical model obtained, an on-line tuning approach, FNNC is proposed to
perform transverse vibration reduction, in which the weights in the structure of the neural
network are actively updated to reach to a best-tuned controller. The FSMC/RLFLC provide
advantages of regulated transient response and robustness. The FSMC with GA makes possible
the FSMC tuning based on the mathematical model with the price of losing robustness. The
FNNC offers an on-line tuning control scheme; however, without experience may result in a
longer convergent time. Finally, due to the fuzzy formulations of the output signals, proposed
schemes hold the capability of imposing saturation bounds on the output control effort.
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